Skip to content

pydantic_evals.reporting

ReportCase

Bases: BaseModel

A single case in an evaluation report.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class ReportCase(BaseModel):
    """A single case in an evaluation report."""

    name: str
    """The name of the [case][pydantic_evals.Case]."""
    inputs: Any
    """The inputs to the task, from [`Case.inputs`][pydantic_evals.Case.inputs]."""
    metadata: Any
    """Any metadata associated with the case, from [`Case.metadata`][pydantic_evals.Case.metadata]."""
    expected_output: Any
    """The expected output of the task, from [`Case.expected_output`][pydantic_evals.Case.expected_output]."""
    output: Any
    """The output of the task execution."""

    metrics: dict[str, float | int]
    attributes: dict[str, Any]

    scores: dict[str, EvaluationResult[int | float]] = field(init=False)
    labels: dict[str, EvaluationResult[str]] = field(init=False)
    assertions: dict[str, EvaluationResult[bool]] = field(init=False)

    task_duration: float
    total_duration: float  # includes evaluator execution time

    # TODO(DavidM): Drop these once we can reference child spans in details panel:
    trace_id: str
    span_id: str

name instance-attribute

name: str

The name of the case.

inputs instance-attribute

inputs: Any

The inputs to the task, from Case.inputs.

metadata instance-attribute

metadata: Any

Any metadata associated with the case, from Case.metadata.

expected_output instance-attribute

expected_output: Any

The expected output of the task, from Case.expected_output.

output instance-attribute

output: Any

The output of the task execution.

ReportCaseAggregate

Bases: BaseModel

A synthetic case that summarizes a set of cases.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class ReportCaseAggregate(BaseModel):
    """A synthetic case that summarizes a set of cases."""

    name: str

    scores: dict[str, float | int]
    labels: dict[str, dict[str, float]]
    metrics: dict[str, float | int]
    assertions: float | None
    task_duration: float
    total_duration: float

    @staticmethod
    def average(cases: list[ReportCase]) -> ReportCaseAggregate:
        """Produce a synthetic "summary" case by averaging quantitative attributes."""
        num_cases = len(cases)
        if num_cases == 0:
            return ReportCaseAggregate(
                name='Averages',
                scores={},
                labels={},
                metrics={},
                assertions=None,
                task_duration=0.0,
                total_duration=0.0,
            )

        def _scores_averages(scores_by_name: list[dict[str, int | float | bool]]) -> dict[str, float]:
            counts_by_name: dict[str, int] = defaultdict(int)
            sums_by_name: dict[str, float] = defaultdict(float)
            for sbn in scores_by_name:
                for name, score in sbn.items():
                    counts_by_name[name] += 1
                    sums_by_name[name] += score
            return {name: sums_by_name[name] / counts_by_name[name] for name in sums_by_name}

        def _labels_averages(labels_by_name: list[dict[str, str]]) -> dict[str, dict[str, float]]:
            counts_by_name: dict[str, int] = defaultdict(int)
            sums_by_name: dict[str, dict[str, float]] = defaultdict(lambda: defaultdict(float))
            for lbn in labels_by_name:
                for name, label in lbn.items():
                    counts_by_name[name] += 1
                    sums_by_name[name][label] += 1
            return {
                name: {value: count / counts_by_name[name] for value, count in sums_by_name[name].items()}
                for name in sums_by_name
            }

        average_task_duration = sum(case.task_duration for case in cases) / num_cases
        average_total_duration = sum(case.total_duration for case in cases) / num_cases

        # average_assertions: dict[str, float] = _scores_averages([{k: v.value for k, v in case.scores.items()} for case in cases])
        average_scores: dict[str, float] = _scores_averages(
            [{k: v.value for k, v in case.scores.items()} for case in cases]
        )
        average_labels: dict[str, dict[str, float]] = _labels_averages(
            [{k: v.value for k, v in case.labels.items()} for case in cases]
        )
        average_metrics: dict[str, float] = _scores_averages([case.metrics for case in cases])

        average_assertions: float | None = None
        n_assertions = sum(len(case.assertions) for case in cases)
        if n_assertions > 0:
            n_passing = sum(1 for case in cases for assertion in case.assertions.values() if assertion.value)
            average_assertions = n_passing / n_assertions

        return ReportCaseAggregate(
            name='Averages',
            scores=average_scores,
            labels=average_labels,
            metrics=average_metrics,
            assertions=average_assertions,
            task_duration=average_task_duration,
            total_duration=average_total_duration,
        )

average staticmethod

average(cases: list[ReportCase]) -> ReportCaseAggregate

Produce a synthetic "summary" case by averaging quantitative attributes.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
@staticmethod
def average(cases: list[ReportCase]) -> ReportCaseAggregate:
    """Produce a synthetic "summary" case by averaging quantitative attributes."""
    num_cases = len(cases)
    if num_cases == 0:
        return ReportCaseAggregate(
            name='Averages',
            scores={},
            labels={},
            metrics={},
            assertions=None,
            task_duration=0.0,
            total_duration=0.0,
        )

    def _scores_averages(scores_by_name: list[dict[str, int | float | bool]]) -> dict[str, float]:
        counts_by_name: dict[str, int] = defaultdict(int)
        sums_by_name: dict[str, float] = defaultdict(float)
        for sbn in scores_by_name:
            for name, score in sbn.items():
                counts_by_name[name] += 1
                sums_by_name[name] += score
        return {name: sums_by_name[name] / counts_by_name[name] for name in sums_by_name}

    def _labels_averages(labels_by_name: list[dict[str, str]]) -> dict[str, dict[str, float]]:
        counts_by_name: dict[str, int] = defaultdict(int)
        sums_by_name: dict[str, dict[str, float]] = defaultdict(lambda: defaultdict(float))
        for lbn in labels_by_name:
            for name, label in lbn.items():
                counts_by_name[name] += 1
                sums_by_name[name][label] += 1
        return {
            name: {value: count / counts_by_name[name] for value, count in sums_by_name[name].items()}
            for name in sums_by_name
        }

    average_task_duration = sum(case.task_duration for case in cases) / num_cases
    average_total_duration = sum(case.total_duration for case in cases) / num_cases

    # average_assertions: dict[str, float] = _scores_averages([{k: v.value for k, v in case.scores.items()} for case in cases])
    average_scores: dict[str, float] = _scores_averages(
        [{k: v.value for k, v in case.scores.items()} for case in cases]
    )
    average_labels: dict[str, dict[str, float]] = _labels_averages(
        [{k: v.value for k, v in case.labels.items()} for case in cases]
    )
    average_metrics: dict[str, float] = _scores_averages([case.metrics for case in cases])

    average_assertions: float | None = None
    n_assertions = sum(len(case.assertions) for case in cases)
    if n_assertions > 0:
        n_passing = sum(1 for case in cases for assertion in case.assertions.values() if assertion.value)
        average_assertions = n_passing / n_assertions

    return ReportCaseAggregate(
        name='Averages',
        scores=average_scores,
        labels=average_labels,
        metrics=average_metrics,
        assertions=average_assertions,
        task_duration=average_task_duration,
        total_duration=average_total_duration,
    )

EvaluationReport

Bases: BaseModel

A report of the results of evaluating a model on a set of cases.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
class EvaluationReport(BaseModel):
    """A report of the results of evaluating a model on a set of cases."""

    name: str
    """The name of the report."""
    cases: list[ReportCase]
    """The cases in the report."""

    def averages(self) -> ReportCaseAggregate:
        return ReportCaseAggregate.average(self.cases)

    def print(
        self,
        width: int | None = None,
        baseline: EvaluationReport | None = None,
        include_input: bool = False,
        include_metadata: bool = False,
        include_expected_output: bool = False,
        include_output: bool = False,
        include_durations: bool = True,
        include_total_duration: bool = False,
        include_removed_cases: bool = False,
        include_averages: bool = True,
        input_config: RenderValueConfig | None = None,
        metadata_config: RenderValueConfig | None = None,
        output_config: RenderValueConfig | None = None,
        score_configs: dict[str, RenderNumberConfig] | None = None,
        label_configs: dict[str, RenderValueConfig] | None = None,
        metric_configs: dict[str, RenderNumberConfig] | None = None,
        duration_config: RenderNumberConfig | None = None,
    ):  # pragma: no cover
        """Print this report to the console, optionally comparing it to a baseline report.

        If you want more control over the output, use `console_table` instead and pass it to `rich.Console.print`.
        """
        table = self.console_table(
            baseline=baseline,
            include_input=include_input,
            include_metadata=include_metadata,
            include_expected_output=include_expected_output,
            include_output=include_output,
            include_durations=include_durations,
            include_total_duration=include_total_duration,
            include_removed_cases=include_removed_cases,
            include_averages=include_averages,
            input_config=input_config,
            metadata_config=metadata_config,
            output_config=output_config,
            score_configs=score_configs,
            label_configs=label_configs,
            metric_configs=metric_configs,
            duration_config=duration_config,
        )
        Console(width=width).print(table)

    def console_table(
        self,
        baseline: EvaluationReport | None = None,
        include_input: bool = False,
        include_metadata: bool = False,
        include_expected_output: bool = False,
        include_output: bool = False,
        include_durations: bool = True,
        include_total_duration: bool = False,
        include_removed_cases: bool = False,
        include_averages: bool = True,
        input_config: RenderValueConfig | None = None,
        metadata_config: RenderValueConfig | None = None,
        output_config: RenderValueConfig | None = None,
        score_configs: dict[str, RenderNumberConfig] | None = None,
        label_configs: dict[str, RenderValueConfig] | None = None,
        metric_configs: dict[str, RenderNumberConfig] | None = None,
        duration_config: RenderNumberConfig | None = None,
    ) -> Table:
        """Return a table containing the data from this report, or the diff between this report and a baseline report.

        Optionally include input and output details.
        """
        renderer = EvaluationRenderer(
            include_input=include_input,
            include_metadata=include_metadata,
            include_expected_output=include_expected_output,
            include_output=include_output,
            include_durations=include_durations,
            include_total_duration=include_total_duration,
            include_removed_cases=include_removed_cases,
            include_averages=include_averages,
            input_config={**_DEFAULT_VALUE_CONFIG, **(input_config or {})},
            metadata_config={**_DEFAULT_VALUE_CONFIG, **(metadata_config or {})},
            output_config=output_config or _DEFAULT_VALUE_CONFIG,
            score_configs=score_configs or {},
            label_configs=label_configs or {},
            metric_configs=metric_configs or {},
            duration_config=duration_config or _DEFAULT_DURATION_CONFIG,
        )
        if baseline is None:
            return renderer.build_table(self)
        else:  # pragma: no cover
            return renderer.build_diff_table(self, baseline)

    def __str__(self) -> str:
        """Return a string representation of the report."""
        table = self.console_table()
        io_file = StringIO()
        Console(file=io_file).print(table)
        return io_file.getvalue()

name instance-attribute

name: str

The name of the report.

cases instance-attribute

cases: list[ReportCase]

The cases in the report.

print

print(
    width: int | None = None,
    baseline: EvaluationReport | None = None,
    include_input: bool = False,
    include_metadata: bool = False,
    include_expected_output: bool = False,
    include_output: bool = False,
    include_durations: bool = True,
    include_total_duration: bool = False,
    include_removed_cases: bool = False,
    include_averages: bool = True,
    input_config: RenderValueConfig | None = None,
    metadata_config: RenderValueConfig | None = None,
    output_config: RenderValueConfig | None = None,
    score_configs: (
        dict[str, RenderNumberConfig] | None
    ) = None,
    label_configs: (
        dict[str, RenderValueConfig] | None
    ) = None,
    metric_configs: (
        dict[str, RenderNumberConfig] | None
    ) = None,
    duration_config: RenderNumberConfig | None = None,
)

Print this report to the console, optionally comparing it to a baseline report.

If you want more control over the output, use console_table instead and pass it to rich.Console.print.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def print(
    self,
    width: int | None = None,
    baseline: EvaluationReport | None = None,
    include_input: bool = False,
    include_metadata: bool = False,
    include_expected_output: bool = False,
    include_output: bool = False,
    include_durations: bool = True,
    include_total_duration: bool = False,
    include_removed_cases: bool = False,
    include_averages: bool = True,
    input_config: RenderValueConfig | None = None,
    metadata_config: RenderValueConfig | None = None,
    output_config: RenderValueConfig | None = None,
    score_configs: dict[str, RenderNumberConfig] | None = None,
    label_configs: dict[str, RenderValueConfig] | None = None,
    metric_configs: dict[str, RenderNumberConfig] | None = None,
    duration_config: RenderNumberConfig | None = None,
):  # pragma: no cover
    """Print this report to the console, optionally comparing it to a baseline report.

    If you want more control over the output, use `console_table` instead and pass it to `rich.Console.print`.
    """
    table = self.console_table(
        baseline=baseline,
        include_input=include_input,
        include_metadata=include_metadata,
        include_expected_output=include_expected_output,
        include_output=include_output,
        include_durations=include_durations,
        include_total_duration=include_total_duration,
        include_removed_cases=include_removed_cases,
        include_averages=include_averages,
        input_config=input_config,
        metadata_config=metadata_config,
        output_config=output_config,
        score_configs=score_configs,
        label_configs=label_configs,
        metric_configs=metric_configs,
        duration_config=duration_config,
    )
    Console(width=width).print(table)

console_table

console_table(
    baseline: EvaluationReport | None = None,
    include_input: bool = False,
    include_metadata: bool = False,
    include_expected_output: bool = False,
    include_output: bool = False,
    include_durations: bool = True,
    include_total_duration: bool = False,
    include_removed_cases: bool = False,
    include_averages: bool = True,
    input_config: RenderValueConfig | None = None,
    metadata_config: RenderValueConfig | None = None,
    output_config: RenderValueConfig | None = None,
    score_configs: (
        dict[str, RenderNumberConfig] | None
    ) = None,
    label_configs: (
        dict[str, RenderValueConfig] | None
    ) = None,
    metric_configs: (
        dict[str, RenderNumberConfig] | None
    ) = None,
    duration_config: RenderNumberConfig | None = None,
) -> Table

Return a table containing the data from this report, or the diff between this report and a baseline report.

Optionally include input and output details.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def console_table(
    self,
    baseline: EvaluationReport | None = None,
    include_input: bool = False,
    include_metadata: bool = False,
    include_expected_output: bool = False,
    include_output: bool = False,
    include_durations: bool = True,
    include_total_duration: bool = False,
    include_removed_cases: bool = False,
    include_averages: bool = True,
    input_config: RenderValueConfig | None = None,
    metadata_config: RenderValueConfig | None = None,
    output_config: RenderValueConfig | None = None,
    score_configs: dict[str, RenderNumberConfig] | None = None,
    label_configs: dict[str, RenderValueConfig] | None = None,
    metric_configs: dict[str, RenderNumberConfig] | None = None,
    duration_config: RenderNumberConfig | None = None,
) -> Table:
    """Return a table containing the data from this report, or the diff between this report and a baseline report.

    Optionally include input and output details.
    """
    renderer = EvaluationRenderer(
        include_input=include_input,
        include_metadata=include_metadata,
        include_expected_output=include_expected_output,
        include_output=include_output,
        include_durations=include_durations,
        include_total_duration=include_total_duration,
        include_removed_cases=include_removed_cases,
        include_averages=include_averages,
        input_config={**_DEFAULT_VALUE_CONFIG, **(input_config or {})},
        metadata_config={**_DEFAULT_VALUE_CONFIG, **(metadata_config or {})},
        output_config=output_config or _DEFAULT_VALUE_CONFIG,
        score_configs=score_configs or {},
        label_configs=label_configs or {},
        metric_configs=metric_configs or {},
        duration_config=duration_config or _DEFAULT_DURATION_CONFIG,
    )
    if baseline is None:
        return renderer.build_table(self)
    else:  # pragma: no cover
        return renderer.build_diff_table(self, baseline)

__str__

__str__() -> str

Return a string representation of the report.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
245
246
247
248
249
250
def __str__(self) -> str:
    """Return a string representation of the report."""
    table = self.console_table()
    io_file = StringIO()
    Console(file=io_file).print(table)
    return io_file.getvalue()

RenderValueConfig

Bases: TypedDict

A configuration for rendering a values in an Evaluation report.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
253
254
255
256
257
258
259
class RenderValueConfig(TypedDict, total=False):
    """A configuration for rendering a values in an Evaluation report."""

    value_formatter: str | Callable[[Any], str]
    diff_checker: Callable[[Any, Any], bool] | None
    diff_formatter: Callable[[Any, Any], str | None] | None
    diff_style: str

RenderNumberConfig

Bases: TypedDict

A configuration for rendering a particular score or metric in an Evaluation report.

See the implementation of _RenderNumber for more clarity on how these parameters affect the rendering.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
class RenderNumberConfig(TypedDict, total=False):
    """A configuration for rendering a particular score or metric in an Evaluation report.

    See the implementation of `_RenderNumber` for more clarity on how these parameters affect the rendering.
    """

    value_formatter: str | Callable[[float | int], str]
    """The logic to use for formatting values.

    * If not provided, format as ints if all values are ints, otherwise at least one decimal place and at least four significant figures.
    * You can also use a custom string format spec, e.g. '{:.3f}'
    * You can also use a custom function, e.g. lambda x: f'{x:.3f}'
    """
    diff_formatter: str | Callable[[float | int, float | int], str | None] | None
    """The logic to use for formatting details about the diff.

    The strings produced by the value_formatter will always be included in the reports, but the diff_formatter is
    used to produce additional text about the difference between the old and new values, such as the absolute or
    relative difference.

    * If not provided, format as ints if all values are ints, otherwise at least one decimal place and at least four
        significant figures, and will include the percentage change.
    * You can also use a custom string format spec, e.g. '{:+.3f}'
    * You can also use a custom function, e.g. lambda x: f'{x:+.3f}'.
        If this function returns None, no extra diff text will be added.
    * You can also use None to never generate extra diff text.
    """
    diff_atol: float
    """The absolute tolerance for considering a difference "significant".

    A difference is "significant" if `abs(new - old) < self.diff_atol + self.diff_rtol * abs(old)`.

    If a difference is not significant, it will not have the diff styles applied. Note that we still show
    both the rendered before and after values in the diff any time they differ, even if the difference is not
    significant. (If the rendered values are exactly the same, we only show the value once.)

    If not provided, use 1e-6.
    """
    diff_rtol: float
    """The relative tolerance for considering a difference "significant".

    See the description of `diff_atol` for more details about what makes a difference "significant".

    If not provided, use 0.001 if all values are ints, otherwise 0.05.
    """
    diff_increase_style: str
    """The style to apply to diffed values that have a significant increase.

    See the description of `diff_atol` for more details about what makes a difference "significant".

    If not provided, use green for scores and red for metrics. You can also use arbitrary `rich` styles, such as "bold red".
    """
    diff_decrease_style: str
    """The style to apply to diffed values that have significant decrease.

    See the description of `diff_atol` for more details about what makes a difference "significant".

    If not provided, use red for scores and green for metrics. You can also use arbitrary `rich` styles, such as "bold red".
    """

value_formatter instance-attribute

value_formatter: str | Callable[[float | int], str]

The logic to use for formatting values.

  • If not provided, format as ints if all values are ints, otherwise at least one decimal place and at least four significant figures.
  • You can also use a custom string format spec, e.g. '{:.3f}'
  • You can also use a custom function, e.g. lambda x: f'{x:.3f}'

diff_formatter instance-attribute

diff_formatter: (
    str
    | Callable[[float | int, float | int], str | None]
    | None
)

The logic to use for formatting details about the diff.

The strings produced by the value_formatter will always be included in the reports, but the diff_formatter is used to produce additional text about the difference between the old and new values, such as the absolute or relative difference.

  • If not provided, format as ints if all values are ints, otherwise at least one decimal place and at least four significant figures, and will include the percentage change.
  • You can also use a custom string format spec, e.g. '{:+.3f}'
  • You can also use a custom function, e.g. lambda x: f'{x:+.3f}'. If this function returns None, no extra diff text will be added.
  • You can also use None to never generate extra diff text.

diff_atol instance-attribute

diff_atol: float

The absolute tolerance for considering a difference "significant".

A difference is "significant" if abs(new - old) < self.diff_atol + self.diff_rtol * abs(old).

If a difference is not significant, it will not have the diff styles applied. Note that we still show both the rendered before and after values in the diff any time they differ, even if the difference is not significant. (If the rendered values are exactly the same, we only show the value once.)

If not provided, use 1e-6.

diff_rtol instance-attribute

diff_rtol: float

The relative tolerance for considering a difference "significant".

See the description of diff_atol for more details about what makes a difference "significant".

If not provided, use 0.001 if all values are ints, otherwise 0.05.

diff_increase_style instance-attribute

diff_increase_style: str

The style to apply to diffed values that have a significant increase.

See the description of diff_atol for more details about what makes a difference "significant".

If not provided, use green for scores and red for metrics. You can also use arbitrary rich styles, such as "bold red".

diff_decrease_style instance-attribute

diff_decrease_style: str

The style to apply to diffed values that have significant decrease.

See the description of diff_atol for more details about what makes a difference "significant".

If not provided, use red for scores and green for metrics. You can also use arbitrary rich styles, such as "bold red".

EvaluationRenderer dataclass

A class for rendering an EvalReport or the diff between two EvalReports.

Source code in pydantic_evals/pydantic_evals/reporting/__init__.py
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
@dataclass
class EvaluationRenderer:
    """A class for rendering an EvalReport or the diff between two EvalReports."""

    # Columns to include
    include_input: bool
    include_metadata: bool
    include_expected_output: bool
    include_output: bool
    include_durations: bool
    include_total_duration: bool

    # Rows to include
    include_removed_cases: bool
    include_averages: bool

    input_config: RenderValueConfig
    metadata_config: RenderValueConfig
    output_config: RenderValueConfig
    score_configs: dict[str, RenderNumberConfig]
    label_configs: dict[str, RenderValueConfig]
    metric_configs: dict[str, RenderNumberConfig]
    duration_config: RenderNumberConfig

    def include_scores(self, report: EvaluationReport, baseline: EvaluationReport | None = None):
        return any(case.scores for case in self._all_cases(report, baseline))

    def include_labels(self, report: EvaluationReport, baseline: EvaluationReport | None = None):
        return any(case.labels for case in self._all_cases(report, baseline))

    def include_metrics(self, report: EvaluationReport, baseline: EvaluationReport | None = None):
        return any(case.metrics for case in self._all_cases(report, baseline))

    def include_assertions(self, report: EvaluationReport, baseline: EvaluationReport | None = None):
        return any(case.assertions for case in self._all_cases(report, baseline))

    def _all_cases(self, report: EvaluationReport, baseline: EvaluationReport | None) -> list[ReportCase]:
        if not baseline:
            return report.cases
        else:
            return report.cases + self._baseline_cases_to_include(report, baseline)

    def _baseline_cases_to_include(self, report: EvaluationReport, baseline: EvaluationReport) -> list[ReportCase]:
        if self.include_removed_cases:
            return baseline.cases
        report_case_names = {case.name for case in report.cases}
        return [case for case in baseline.cases if case.name in report_case_names]

    def _get_case_renderer(
        self, report: EvaluationReport, baseline: EvaluationReport | None = None
    ) -> ReportCaseRenderer:
        input_renderer = _ValueRenderer.from_config(self.input_config)
        metadata_renderer = _ValueRenderer.from_config(self.metadata_config)
        output_renderer = _ValueRenderer.from_config(self.output_config)
        score_renderers = self._infer_score_renderers(report, baseline)
        label_renderers = self._infer_label_renderers(report, baseline)
        metric_renderers = self._infer_metric_renderers(report, baseline)
        duration_renderer = _NumberRenderer.infer_from_config(
            self.duration_config, 'duration', [x.task_duration for x in self._all_cases(report, baseline)]
        )

        return ReportCaseRenderer(
            include_input=self.include_input,
            include_metadata=self.include_metadata,
            include_expected_output=self.include_expected_output,
            include_output=self.include_output,
            include_scores=self.include_scores(report, baseline),
            include_labels=self.include_labels(report, baseline),
            include_metrics=self.include_metrics(report, baseline),
            include_assertions=self.include_assertions(report, baseline),
            include_durations=self.include_durations,
            include_total_duration=self.include_total_duration,
            input_renderer=input_renderer,
            metadata_renderer=metadata_renderer,
            output_renderer=output_renderer,
            score_renderers=score_renderers,
            label_renderers=label_renderers,
            metric_renderers=metric_renderers,
            duration_renderer=duration_renderer,
        )

    def build_table(self, report: EvaluationReport) -> Table:
        case_renderer = self._get_case_renderer(report)
        table = case_renderer.build_base_table(f'Evaluation Summary: {report.name}')
        for case in report.cases:
            table.add_row(*case_renderer.build_row(case))

        if self.include_averages:
            average = report.averages()
            table.add_row(*case_renderer.build_aggregate_row(average))
        return table

    def build_diff_table(self, report: EvaluationReport, baseline: EvaluationReport) -> Table:
        report_cases = report.cases
        baseline_cases = self._baseline_cases_to_include(report, baseline)

        report_cases_by_id = {case.name: case for case in report_cases}
        baseline_cases_by_id = {case.name: case for case in baseline_cases}

        diff_cases: list[tuple[ReportCase, ReportCase]] = []
        removed_cases: list[ReportCase] = []
        added_cases: list[ReportCase] = []

        for case_id in sorted(set(baseline_cases_by_id.keys()) | set(report_cases_by_id.keys())):
            maybe_baseline_case = baseline_cases_by_id.get(case_id)
            maybe_report_case = report_cases_by_id.get(case_id)
            if maybe_baseline_case and maybe_report_case:
                diff_cases.append((maybe_baseline_case, maybe_report_case))
            elif maybe_baseline_case:
                removed_cases.append(maybe_baseline_case)
            elif maybe_report_case:
                added_cases.append(maybe_report_case)
            else:  # pragma: no cover
                assert False, 'This should be unreachable'

        case_renderer = self._get_case_renderer(report, baseline)
        diff_name = baseline.name if baseline.name == report.name else f'{baseline.name}{report.name}'
        table = case_renderer.build_base_table(f'Evaluation Diff: {diff_name}')
        for baseline_case, new_case in diff_cases:
            table.add_row(*case_renderer.build_diff_row(new_case, baseline_case))
        for case in added_cases:
            row = case_renderer.build_row(case)
            row[0] = f'[green]+ Added Case[/]\n{row[0]}'
            table.add_row(*row)
        for case in removed_cases:
            row = case_renderer.build_row(case)
            row[0] = f'[red]- Removed Case[/]\n{row[0]}'
            table.add_row(*row)

        if self.include_averages:
            report_average = ReportCaseAggregate.average(report_cases)
            baseline_average = ReportCaseAggregate.average(baseline_cases)
            table.add_row(*case_renderer.build_diff_aggregate_row(report_average, baseline_average))

        return table

    def _infer_score_renderers(
        self, report: EvaluationReport, baseline: EvaluationReport | None
    ) -> dict[str, _NumberRenderer]:
        all_cases = self._all_cases(report, baseline)

        values_by_name: dict[str, list[float | int]] = {}
        for case in all_cases:
            for k, score in case.scores.items():
                values_by_name.setdefault(k, []).append(score.value)

        all_renderers: dict[str, _NumberRenderer] = {}
        for name, values in values_by_name.items():
            merged_config = _DEFAULT_NUMBER_CONFIG.copy()
            merged_config.update(self.score_configs.get(name, {}))
            all_renderers[name] = _NumberRenderer.infer_from_config(merged_config, 'score', values)
        return all_renderers

    def _infer_label_renderers(
        self, report: EvaluationReport, baseline: EvaluationReport | None
    ) -> dict[str, _ValueRenderer]:
        all_cases = self._all_cases(report, baseline)
        all_names: set[str] = set()
        for case in all_cases:
            for k in case.labels:
                all_names.add(k)

        all_renderers: dict[str, _ValueRenderer] = {}
        for name in all_names:
            merged_config = _DEFAULT_VALUE_CONFIG.copy()
            merged_config.update(self.label_configs.get(name, {}))
            all_renderers[name] = _ValueRenderer.from_config(merged_config)
        return all_renderers

    def _infer_metric_renderers(
        self, report: EvaluationReport, baseline: EvaluationReport | None
    ) -> dict[str, _NumberRenderer]:
        all_cases = self._all_cases(report, baseline)

        values_by_name: dict[str, list[float | int]] = {}
        for case in all_cases:
            for k, v in case.metrics.items():
                values_by_name.setdefault(k, []).append(v)

        all_renderers: dict[str, _NumberRenderer] = {}
        for name, values in values_by_name.items():
            merged_config = _DEFAULT_NUMBER_CONFIG.copy()
            merged_config.update(self.metric_configs.get(name, {}))
            all_renderers[name] = _NumberRenderer.infer_from_config(merged_config, 'metric', values)
        return all_renderers

    def _infer_duration_renderer(
        self, report: EvaluationReport, baseline: EvaluationReport | None
    ) -> _NumberRenderer:  # pragma: no cover
        all_cases = self._all_cases(report, baseline)
        all_durations = [x.task_duration for x in all_cases]
        if self.include_total_duration:
            all_durations += [x.total_duration for x in all_cases]
        return _NumberRenderer.infer_from_config(self.duration_config, 'duration', all_durations)